S=-16t^2+96T+9

Simple and best practice solution for S=-16t^2+96T+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S=-16t^2+96T+9 equation:



=-16S^2+96+9
We move all terms to the left:
-(-16S^2+96+9)=0
We get rid of parentheses
16S^2-96-9=0
We add all the numbers together, and all the variables
16S^2-105=0
a = 16; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·16·(-105)
Δ = 6720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6720}=\sqrt{64*105}=\sqrt{64}*\sqrt{105}=8\sqrt{105}$
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{105}}{2*16}=\frac{0-8\sqrt{105}}{32} =-\frac{8\sqrt{105}}{32} =-\frac{\sqrt{105}}{4} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{105}}{2*16}=\frac{0+8\sqrt{105}}{32} =\frac{8\sqrt{105}}{32} =\frac{\sqrt{105}}{4} $

See similar equations:

| 4-8e=12 | | w2+15=40 | | -18x-5+12x=7 | | 5-j=16 | | x-5+74+x=180 | | |5x+9|=2x+27 | | -22x=-20 | | A=b/9 | | t=-4(-5) | | 7x+2=-8x+13 | | t+26=–58 | | –(6m+8)=4(17─m) | | −3=x/−6x​+4 | | 63=z+95 | | 4p^2+4p-5=0 | | 7+v/3.84=10 | | 6/11a+3=21 | | ∣−5b+3∣=33 | | 3^(2x)-36(3^x)=-243 | | 35+18u-5u=0 | | v+4.6=9.66 | | 4x-7=15x-3 | | 2x=8-(x-1) | | 16m+8=8(+) | | -8x^2+7+6=0 | | 9x²-6x-8=0 | | 2x2-4x=5-2x2 | | 3+4t=25 | | 9x+60+(6x+15)=180 | | 11x-4=63 | | 9=68+x​ | | n/3+4=16 |

Equations solver categories